Free Subalgebras of Lie Algebras Close to Nilpotent
نویسنده
چکیده
We prove that for every automata algebra of exponential growth, the associated Lie algebra contains a free subalgebra. For n ≥ 1, let Ln+2 be a Lie algebra with generator set x1, . . . , xn+2 and the following relations: for k ≤ n, any commutator of length k which consists of fewer than k different symbols from {x1, . . . , xn+2} is zero. As an application of this result about automata algebras, we prove that for every n ≥ 1, Ln+2 contains a free subalgebra. We also prove the similar result about groups defined by commutator relations.
منابع مشابه
Some properties of nilpotent Lie algebras
In this article, using the definitions of central series and nilpotency in the Lie algebras, we give some results similar to the works of Hulse and Lennox in 1976 and Hekster in 1986. Finally we will prove that every non trivial ideal of a nilpotent Lie algebra nontrivially intersects with the centre of Lie algebra, which is similar to Philip Hall's result in the group theory.
متن کاملThe structure of a pair of nilpotent Lie algebras
Assume that $(N,L)$, is a pair of finite dimensional nilpotent Lie algebras, in which $L$ is non-abelian and $N$ is an ideal in $L$ and also $mathcal{M}(N,L)$ is the Schur multiplier of the pair $(N,L)$. Motivated by characterization of the pairs $(N,L)$ of finite dimensional nilpotent Lie algebras by their Schur multipliers (Arabyani, et al. 2014) we prove some properties of a pair of nilpoten...
متن کاملSolvable Lie algebras with $N(R_n,m,r)$ nilradical
In this paper, we classify the indecomposable non-nilpotent solvable Lie algebras with $N(R_n,m,r)$ nilradical,by using the derivation algebra and the automorphism group of $N(R_n,m,r)$.We also prove that these solvable Lie algebras are complete and unique, up to isomorphism.
متن کاملClassification of Lie Subalgebras up to an Inner Automorphism
In this paper, a useful classification of all Lie subalgebras of a given Lie algebraup to an inner automorphism is presented. This method can be regarded as animportant connection between differential geometry and algebra and has many applications in different fields of mathematics. After main results, we have applied this procedure for classifying the Lie subalgebras of some examples of Lie al...
متن کاملAbelian Ideals of Maximal Dimension for Solvable Lie Algebras
We compare the maximal dimension of abelian subalgebras and the maximal dimension of abelian ideals for finite-dimensional Lie algebras. We show that these dimensions coincide for solvable Lie algebras over an algebraically closed field of characteristic zero. We compute this invariant for all complex nilpotent Lie algebras of dimension n ≤ 7. Furthermore we study the case where there exists an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008